Canonical Wnt signaling in megakaryocytes regulates proplatelet formation.
نویسندگان
چکیده
Wnt signaling is involved in numerous aspects of vertebrate development and homeostasis, including the formation and function of blood cells. Here, we show that canonical and noncanonical Wnt signaling pathways are present and functional in megakaryocytes (MKs), with several Wnt effectors displaying MK-restricted expression. Using the CHRF288-11 cell line as a model for human MKs, the canonical Wnt3a signal was found to induce a time and dose-dependent increase in β-catenin expression. β-catenin accumulation was inhibited by the canonical antagonist dickkopf-1 (DKK1) and by the noncanonical agonist Wnt5a. Whole genome expression analysis demonstrated that Wnt3a and Wnt5a regulated distinct patterns of gene expression in MKs, and revealed a further interplay between canonical and noncanonical Wnt pathways. Fetal liver cells derived from low-density-lipoprotein receptor-related protein 6-deficient mice (LRP6(-/-)), generated dramatically reduced numbers of MKs in culture of lower ploidy (2N and 4N) than wild-type controls, implicating LRP6-dependent Wnt signaling in MK proliferation and maturation. Finally, in wild-type mature murine fetal liver-derived MKs, Wnt3a potently induced proplatelet formation, an effect that could be completely abrogated by DKK1. These data identify novel extrinsic regulators of proplatelet formation, and reveal a profound role for Wnt signaling in platelet production.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملActin Inhibition Increases Megakaryocyte Proplatelet Formation through an Apoptosis-Dependent Mechanism
BACKGROUND Megakaryocytes assemble and release platelets through the extension of proplatelet processes, which are cytoplasmic extensions that extrude from the megakaryocyte and form platelets at their tips. Proplatelet formation and platelet release are complex processes that require a combination of structural rearrangements. While the signals that trigger the initiation of proplatelet format...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملConstitutively released adenosine diphosphate regulates proplatelet formation by human megakaryocytes.
BACKGROUND The interaction of adenosine diphosphate with its P2Y(1) and P2Y(12) receptors on platelets is important for platelet function. However, nothing is known about adenosine diphosphate and its function in human megakaryocytes. DESIGN AND METHODS We studied the role of adenosine diphosphate and P2Y receptors on proplatelet formation by human megakaryocytes in culture. RESULTS Megakar...
متن کاملBone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation.
Production of blood cells is regulated by the interplay of various cytokines and bone marrow stromal cells. Recently, a ligand for the orphan receptor Mpl was identified as thrombopoietin (TPO), which specifically regulates megakaryocyte differentiation, and it was reported to be expressed mainly in liver and kidney. As it was found that thrombopoietin is also produced in bone marrow stromal ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 121 1 شماره
صفحات -
تاریخ انتشار 2013